Keywords AI
Compare Milvus and Weaviate side by side. Both are tools in the Vector Databases category.
| Category | Vector Databases | Vector Databases |
| Pricing | Open Source | Open Source |
| Best For | Organizations that need vector search at billion-scale with high throughput | Developers who need a flexible, open-source vector database with multimodal and hybrid search |
| Website | milvus.io | weaviate.io |
| Key Features |
|
|
| Use Cases |
|
|
Key criteria to evaluate when comparing Vector Databases solutions:
Milvus is an open-source vector database built for scalable similarity search, capable of handling billions of vectors. Backed by the Zilliz company, Milvus supports multiple index types (IVF, HNSW, DiskANN), GPU-accelerated search, and multi-tenancy. Zilliz Cloud offers a fully managed version with automatic scaling. Milvus is widely used in enterprise deployments requiring high-throughput vector search at scale.
Weaviate is an open-source vector database that combines vector search with structured filtering and generative capabilities. It supports multiple vectorization modules, hybrid search (combining BM25 and vector search), and built-in integrations with LLMs for retrieval-augmented generation. Weaviate offers both self-hosted and managed cloud deployments, with a GraphQL API that makes it easy to query complex data structures.
Purpose-built databases for storing, indexing, and querying high-dimensional vector embeddings used in semantic search, RAG, and recommendation systems.
Browse all Vector Databases tools →A vector database stores high-dimensional numerical representations (embeddings) of data like text, images, or audio, and enables fast similarity search across millions or billions of vectors using approximate nearest neighbor algorithms.
For small to medium datasets (under 10 million vectors), pgvector in PostgreSQL works well and avoids adding another service. For larger datasets or when you need advanced features like hybrid search and real-time indexing, a dedicated vector database is recommended.
Match the embedding model to your use case. For general text search, models like OpenAI text-embedding-3 or Cohere embed-v3 work well. For domain-specific applications, consider fine-tuned models. Always benchmark with your actual data.